A Demonstration Code For
Isogeometric Elements

Rafael Bramm, Hai Dang Nguyen,
Daniel Stefani

0.8
0.6
0.4

0.2

Project-INF

Course: Bachelor of Science Informatik
Examiner: Prof. Dr. rer. nat. habil. Miriam Mehl
Supervisor: Dr. rer. nat. Stefan Zimmer

Institute for Parallel and Distributed Systems
University of Stuttgart
Germany
Start: 10.03.2019
End: 10.09.2019

Abstract

This project is a demonstration code of an Isogeometric Analysis (IGA) tool
written in python to solve one (1D) and two (2D) dimensional L2 best approx-
imations and Poisson’s equations. IGA uses a Galerkin method similar to the
Finite Element Method (FEM). This paper describes the maths and structure
of the implemented program, also some examples are listed. The described pro-
gram has cutbacks in different fields, like supported dimensions, to assure good
readability. It is slightly oriented after the GeoPDEs tool described in [1] and
[4].

1 Introduction

Exhaustive research in Isogeometric Analysis began in the 2000s. One of the
pioneers of Isogeometric Analysis is T.J.R. Hughes, who has arguably written
the first paper [3] about IGA. Since then the interest in IGA grew because of
benefits like the exact geometrical domain that is used in comparison to Finite
Element Method (FEM), which aren’t a direct topic of this paper. GeoPDEs
is a more complex tool, but open source program, which is recommended for
deeper interest in this field.

This paper is structured as follows. Section 2 lists the basics of the mathematical
methods used in the program. Section 3 describes the implementation and the
usage of the program. Examples are presented in section 4. Section 5 gives a
short discussion, section 6 gives a summary and section 7 an short outlook into
further implementation possibilities.

2 Basics

This is just a short overview of the used maths, further information on Isogeo-
metric Analysis are found in [4] and [3]. The Isogeometric Analysis is comput-
ing a numerical approximation for the solution of a partial differential equation
(PDE) with a Galerkin method, which means a system of equations needs to
be solved. The Finite Element Method (FEM) also uses a Galerkin method to
compute numerical approximations of the solutions of PDE’s. In both cases a
system of linear equations needs to be solved to determine the solution. The
IGA program finds an uj, such that:

a(u;“vh) = (f, ’Uh)V’Uh e (1)

While a(-,-) is a bilinearform, (-,-) is the L? Inner Product and V}, a set of
Spline basis functions. In this program the equation will be solvable for 1D /2D
L2 best approximation and Poisson’s problem.

2.1 Workflow

This workflow describes the maths, but also the program, this way the user can
stick to this order.

1. The mesh is built from the number of intervals n and the dimension k of
the basis functions.

2. Basis functions are constructed as B-Splines with the mesh.

3. The stiffness matrix A is computed with the basis functions, also a vector
b with the input function and the basis.

4. After solving the system of equations Aa = b for a the result function is
generated.

2.2 Numerical Quadrature

For the approximation integrals need to be computed, which are handled by the
Gauss-Legendre Quadrature in every method of the program. Therefore Gauss-
Legendre points and weights are generated for a domain [a,b]. The sum over the
function evaluated in these quadrature points multiplied by the corresponding
weight «; approximates the integral.

b b—a~~ . b— b
J R S e R @
a i=1

2 2

2.3 Domain, Mesh and Functions

All computation in the program are done in the fixed interval Q = [0, 1]” where
D is the dimension of the evaluated problem. This will improve the readability
of the code in program and simplify the computation of a mesh because of the
fixed boundaries. But not every new problem is defined on this fixed interval.
Therefore a transformation from the fixed interval Q to the target interval € is
introduced in the subsection Transformation.

The knot vector t in € is constructed by setting the number of intervals n and
the dimension of the used basis functions k. With this vector Gauss-Legendre
quadrature points in every interval are generated.

Because every function only needs to be evaluated in the finite point set of the
mesh, they are saved as vectors, which are evaluated only in these points. This
reduces the overhead of recomputing the values for each function.

2.4 Basis Functions

The basis in this program is a set consisting of B-Spline functions. The 1D
B-Spline basis has m=n+k functions, which are derived with the previously
established mesh. The B-Spline constructor is given the knot vector t, the
position ¢ where the function should be different from 0 and the degree k of

the function to compute the m basis functions. The 2D B-Spline functions are
evaluated by the pairwise tensor product of the 1D B-Spline functions.

2.5 Result Function

This function is computed with the solution uj, of a problem, which corresponds
to v in the program. The «; are used as coefficients for the basis functions ¢;.
This function is given in) and is transformed via push-forward to 2.

r= Z a;pi (3)

2.6 Transformation

A transformation function F is used to map the result function from the compu-
tational domain) to the physical domain 2. To achieve a solid transformation
the computations in the solver modules are fixed by additional factors in form
of an integral transformation and a derivative transformation following a push-
forward into the target domain.

2.6.1 Push-Forward

This directly transforms the coordinates into the target domain: Q = F(Q)

i Jo0[1]2][3[4][5
F@) [3[4(5]6]7]3

Table 1: 1D function vector before transformation

The function values remain unchanged, but the evaluated & changes to F(Z).

Xx=F@&) [0]2[4]6[8]10
F(x) 3[4(5(67]38

Table 2: 1D function vector after transformation with 2x

2.6.2 Integral Transformation

An integral is transformed with the following formula where F is the transfor-
mation function and Jg the jacobian matrix of F.

[sz = [rE@iela = [f@)eias (4)

The jacobian determinant is computed in equation (5) and is the absolute value
of the derivation in the 1D case.

| Jp| =/ det(J5 Tr) (5)

2.6.3 Derivative Transformation

The derivatives in the program need to be transformed as well. The grad(-)
operator denotes the gradient of a function.

grad(f)|le=r@) = (Ji|2) grad(fls) (6)

The J;f is the Moore-Penrose pseudoinverse, computed with the formula in (7).

(JEe)" = (JpJr) " Jr (7)

2.7 L2 best approximation

The goal of this approximation is to find a function, such that equation 8 holds
true:

u:Zai-(biwithu;f ()

The ¢; are the basis functions of the mesh. This approximation is handled with
the L2 inner Scalar product with a integral transformation, which is defined as
follows:

ars(u,v) = /Qu(:%) co(&) - |Jp(2)|dE (9)

The stiffness matrix A and the vector b which build the system of linear equa-
tions follow like this:

arz(¢o, ¢o) e ar2(bo; Pm—1) ar2(f, ¢o)
. _ i b i

aL2(¢7r;—17 ®0) .. aL2(¢m—.17 Gm—1) aL2(f7.¢m—l)
(10)

A:

The solution of Aa: = b is used to built the result function with = 3", c; - ¢;.
This solution function is pushed forward by plotting it in the target domain.

2.8 Poisson’s Equation

The goal of this approximation is to find a function, such that equation 11 holds
true:

|
U:Z(Jéi - ¢; such that — Au=f (11)

For Poisson’s equation boundary conditions need to be set, which are chosen as
Dirichlet boundary conditions. They are set individually by a 2 element vector in
1D and fixed for corners and four boundary functions (byq(z), b,-(vy), bi(y), bu(z))
for every edge in 2D. Those boundary points in 2D are computed with the 1D
L2 best approximation with transformation, while one entry of the 2D trans-
formation function is fixed for every edge to construct a 1D function from the

2D. The stiffness matrix for non boundary points is set up the same as for L2
approximation, except it is using the Laplacian operator with derivative and
integral transformations

aLap(Pi, ¢5) = /Q((J?Li)T (@) ((Tgla)" - wo(@) - |Jp(@)lde (12)

Computed for all 4,5 < mP (D is the dimension - in our case 1 or 2). The
vector b is computed exactly like the one in the L2 approximation. A special
feature in this program is the reordering of the matrix in the 2D Poisson solver.
The corners of the interval are set to fixed values 1, followed by the entry of
the transformed edges which is solved first in a separate stiffness matrix A and
vector b. Finally the inner points of the problem are added and a complete
solution is computed. This way the values of the matrix can be printed and
evaluated individually by an interested user. The distribution of the values is
also shown in figure 1. The darker colored parts consist of non zero values. The
ordering in corner, edges/boundaries and inner points is denoted by the red
lines. After solving Aa = b, the result function is computed like for the L2 best
approximation and pushed into the target domain.

comer

10 4

boundary
20

30

40 = "
inner

50

60

Figure 1: Colored Matrix in Poisson 2D

3 Implementation

Our program is written in Python and the user will need to have python3
including the libraries numpy, scipy and matplotlib installed to run it.

3.1 Program Structure

lmpnrl) FunUliun_1DJ BSpline_1D J
o import
| . <
H impo
i e
' ; Function Vector BSplineFunction
! Il
Test_Function_1D J Trans_FunCliunjDJ
BoundaryFunctions —
TransFunctions ErrorFunction ResultFunction
TestFunctions

Mesh_10 J

L2_Best_approx_1D J import -' ’ N ——
es

Possion_Eq_1D J
import

9
L2_Elest_appr0x_1D) import Mesh 2D
Poisson_Eq_20 import = Mesh
Test_Fundion_QD) Trans_Fundion_Q[ﬂ Function_QE»
TestFunctions TransFunctions Function Wector A,
BSpline_2D J
import

: i

i :.____in_’l_DPEt________) ErrorFunction ResultFunction BSplineFunction

|

|

r
SO ... S 5|

Figure 2: Python modules

Our program is organized in different modules: there are 4 solver modules
and 10 supporting modules.
The modules Function_1D and Function_2D contain the Function class which
is used to represent mathematical functions. All other functions classes inherit
from this class and those modules are imported by all the others using func-
tions. Those modules also define the vector form of functions and the various
plot functions of the program.
The modules Mesh_1D and Mesh_2D hold information about calculation parame-
ters such as the degree of our basis functions k, the grid size n and the quadrature

points and their respective weights. The mesh modules are inspired by [2] and
[1].

Test_Function_1D, Trans Function_1D and their two dimensional counterparts
contain sample functions. A user could extend those for additional function.
Other than that, they are not needed in the calculation.

Furthermore, there are modules for the basis functions, in our case we are
using B-Splines. Lastly, there are the solver modules, where the computation is
done. Each solver module can solve one problem type and imports all necessary
supporting modules. As an example, the module Poisson Eq_2D solves the
Poisson’s Equation for two dimensional functions. For that it has to import the
module for two dimensional functions, B-Splines, transformation functions, test
functions and the two dimensional mesh. Since Poisson’s Equation has boundary
conditions, also Test_Function_1D, BSpline_1D and Mesh_1D are needed. The
relationship between all modules can be seen in Figure 2.

3.2 Programflow

The program flow is similar to the workflow described in 2.1. Additionally, our
program will draw the result function as well as other relevant plots. This step
however can be quite time and memory consuming.

3.2.1 Usage

To solve a problem the user has to find and open the relevant solver module. In
each of those modules is a main function. There the user has to define the test
function, the tranformation function and, as may be the case, the boundary
function (or a list of boundary functions in the case of Poisson_Eq_2D). For
Poisson’s Equation there is the possibility to add an exact solution, provided
the user wants to ascertain the exactitude of the solution of this program. If
the user does this, they should be aware to use the identity as transformation
function.

The user can use the sample functions we provided but may also define their own
functions. After that, the user needs to decide on the amount of intervalls (n) in
the grid as well as the degree of the basis functions (k). Higher parameters will
yield more exact solutions but also increase the computation time. The user
can also activate or deactivate the push-forward, which is not recommended.
Solutions, which are not mapped into the target space, were a subject of testing,
but have actually no usage for a user. The user can also tell the program, if
the input function is already defined on Q, or in the domain. If the input is
defined on € no additional measures have to be taken, but if it is defined on 2
the points are evaluated in F(x) instead of x. This is essentially a reversal of a
push-forward. Lastly the user can modify the plot functionss to his likings and
afterwards call the solve() method with all relevant parameters.

4 Examples

4.1 Example 1: One dimensional L2 best approximation

This example is chosen especially easy, such that the calculation can be shown.
The test function is set to

|
f(z) = 2z — 1 such that u(x) =2z — 1

The transformation function is chosen as: F(x) =«

This corresponds in all factors added through transformation in being 1. They
have no effect on any output. Also the push-forward at the end is an identity
function, which can be neglected.

The number n of intervals is chosen as 2 and the dimension k of the B-Splines
is chosen as 1. The corresponding three B-Spline functions are:

2241 forOSxS% - 2x forOSxS%
¢0($){ 0 %<x§1 $1(z) = —2z+2 %<x§1
0 for0<z<?i
_ ST>35
¢2(m)_{2x—1 l<z<1
1 1 0
. . . ? 112 1 . . 1 1\T
This stiffness matrix A = | 35 7 75 | and right hand side b = (—g 0 g)
U .
follow. Solving the system of equations Ao = bresultsinaw= (-1 0 1)

The result function is computed like r(z) = —1 - ¢o(z) + 1 - ¢o(x) = 22 — 1,
which is the exact analytical solution.

The left plot is the computed function of the program and the right one shows
the deviation from the exact solution s(x). The plots show the high accuracy of
the method with the deviation being near zero.

Result function 1e-16 Deviation

100
075
050 15

025

0.00
-035
-0.50 00

-0.75

-1.00

0.0 0.2 0.4 0e 08 10 00 0z 04 06 0.8 10

Figure 3: numerical result function r(x) (left)
deviation d(z) = s(z) — r(z) (right)

4.2 Example 2: Two dimensional Poisson’s Equation

This example represents the Laplace equation in 2D.

|
—Au=0

The lower bound is chosen as bg(x) = 0, the right bound as b,(y) = y, the left
bound as b;(y) = 0 and the upper bound as b, (z) = x to set the values in the
edges of the interval. The transformation function is set to: F(z,y) = (x,y)
This corresponds in all factors added through transformation in being the iden-
tity matrix. They have no effect on any output. Also the push-forward at the
end is an identity function, which can be neglected.

The number n of intervals is chosen as 4 and the dimension k of the B-Splines
is chosen as 2. The exact solution is s(z,y) = « -y and r(z,y) is the result
function of the program. The following plot shows the deviation of the program
output in comparison to the exact solution.

Result function Deviation

Figure 4: result function r(x,y) (left), deviation d(z,y) = s(z,y) —r(x,y) (right)

In this example the deviation is also nearly 0 in every point.

4.3 Example 3: Two dimensional L2 best approximation

This example function is given as:

J(,y) = sin(rz) - sin(ry)

22 4 2
The transformation function is set to: F(z,y) = 2
. . .. 2 2
The general jacobi matrix is Jp = Ox 23

The transformation factors and the final push-forward remap the function into
target domain 2. The following plot shows the transformed function in the
target domain. The title page also shows the approximated function, but it is
transformed with the identity.

result function

0a
0.6
0.4
02

Figure 5: Example 3 pushed result r(x,y)

5 Discussion

The described program has good performance if no plot is returned. The plot
function pulls the performance down. The performance is boosted by the vec-
tor representation of the functions, which avoids recomputation of values. The
inputs are given as functions, not vectors to simplify the usage for the tester.
But essentially the program could also be used with only function vector input.
In the program some methods have a double occurence, because different solver
need the same function. This design decision is made, such that the code im-
proves in readability. Because of the listing of the same function in different
modules, those modules don’t need to interact with each other. This boosts the
clarity of the program as a whole, what was set as a design goal.

6 Summary

The IGA uses a Galerkin method similar to the FEM, but with a domain trans-
formation. This way the actual evaluation is done in an fixed and easier to
compute domain. The code of the program is following the structure of the
underlying maths. Which supports the interested reader in understanding the
code after reading this paper. The solver modules are approached individually,
so that the user can start with easy examples as given in example 1 or 2 and
construct more complex examples like example 3.

7 Outlook

The cutdowns of the program could be eradicated, which could worsen the
readability and representation of the code. A support for higher dimension could
also be implemented. Other plot libraries or changing of plot parameters should
be evaluated to potentially boost the performance. Implementing different basis
functions, e.g. NURBS instead of B-Splines, is also conceivable. Additionally,
parsing of inputs and outputs in CAD programs could be a possibility.

10

References

[1] C. De Falco, A. Reali, and R. VdZquez. Geopdes: A research tool for
isogeometric analysis of pdes. Adv. Eng. Softw., 42(12):1020-1034, December
2011.

[2] Eduardo M. Garau and Rafael Vzquez. Algorithms for the implementation
of adaptive isogeometric methods using hierarchical b-splines. Appl. Numer.
Math., 123(C):58-87, January 2018.

[3] T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis: Cad, fi-
nite elements, nurbs, exact geometry and mesh refinement. Computer Meth-
ods in Applied Mechanics and Engineering, 194(39):4135 — 4195, 2005.

[4] R. Vazquez. A new design for the implementation of isogeometric analysis
in octave and matlab. Comput. Math. Appl., 72(3):523-554, August 2016.

11

Eigenstandigkeitserklarung

Ich erklare mit meiner Unterschrift, dass ich diese Arbeit selbststdndig verfasst habe und keine
anderen als die angegebenen Quellen benutzt habe. Alle Stellen dieser Arbeit, die dem Wortlaut,
dem Sinn oder der Argumentation nach anderen Werken entnommen sind (einschlieflich des World
Wide Web und anderer elektronischer Text- und Datensammlungen), habe ich unter Angabe der
Quellen vollstéandig kenntlich gemacht.

Ort, Datum Unterschrift

